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Screening synthetic combinatorial libraries, such as mixtures of oligo(iV-substituted)glycines, 
facilitates rapid drug lead discovery and optimization by vastly increasing the number of 
candidate molecules made and tested. Discovery efficiency and productivity can be further 
improved by using experimental design to maximize molecular diversity for a given library 
size or to bias the library with key features for a specific receptor. We describe new methods 
to quantify molecular diversity using descriptors that characterize lipophilicity, shape and 
branching, chemical functionality, and specific binding features. Experimental design methods 
select sets of side chains that are diverse in these properties, and "flower plots" allow the 
diversity to be graphically compared. We also quantify the overall diversity accessible to 
different families of combinatorial chemistry. 

Introduction 

Synthesizing and screening combinatorial mixtures 
of novel organic compounds is emerging as an increas
ingly important new technology for drug discovery.1 For 
example, oligo(iV-substituted)glycine "peptoids" (NSGs) 
are synthetic oligomers with a peptide backbone but 
with side chains attached at the amide nitrogen2 instead 
of the a-carbon. Screening target-biased NSG libraries 
yielded novel, nanomolar antagonists to the ai-adren-
ergic and /i-opiate receptors.3 NSGs are synthesized by 
a solid-phase "submonomer" route which can incorpo
rate the side chains from any of over 1000 readily 
available amines.4 Coupled with well over 1000 possible 
amino-terminal capping groups, this abundance of side 
chains can yield over 1012 possible capped trimers, 
permitting highly diverse NSG libraries without resort
ing to high molecular weights that would limit oral 
bioavailability. However, this enormous complexity 
carries a price. While one can readily synthesize and 
screen all 160 000 possible tetrapeptides of the 20 coded 
amino acids, it is impractical to make and test trillions 
of possible capped "tripeptoids". A strategy for design
ing small combinatorial subsets of this vast potential 
library that will still effectively discover potent ligands 
would further accelerate drug lead discovery. This 
paper describes a general methodology, applicable to 
peptoids or other modular chemistries, that facilitates 
the design of subsets for synthesis and testing. It 
introduces a general approach for reducing high-
dimensional discontinuous descriptors, such as bit 
strings or tables, to low-dimensional continuous descrip
tors suitable for visualization, experimental design, and 
other mathematical manipulations. Examples will be 
given from a set of 721 primary amines suitable as 
peptoid side chains and a set of 1133 carboxylic acids 
suitable for capping groups. 

Efficiently designed combinatorial libraries for gen
eral screening of new, structurally uncharacterized 
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receptors should minimize redundancy by employing a 
basis set of components with very diverse structures. 
Conversely, highly focused screening to optimize a lead 
or incorporate other available structural information 
should employ monomers with functionality similar to 
those in known ligands. Intermediate "biased-diversity" 
strategies should mix some monomers containing pha-
macophoric features with others that are highly diverse, 
presenting the specific features to the receptor in myriad 
geometries and chemical environments. Our method 
quantifies similarity between monomers by computing 
a set of 15-20 properties for each side chain, so the 
distance between property vectors reflects the similarity 
between the monomers. Experimental design methods 
minimize or maximize these distances, thus selecting 
maximally similar or dissimilar monomer sets. The 
method also provides an explicit mechanism to incor
porate "chemical intuition" into the design. 

Our approach quantifies and compares molecular 
diversity between different types of libraries, an impor
tant step in answering the critical question: "How much 
diversity is sufficient?". We also describe a novel and 
simple graphical approach, "flower plots", for describing 
and comparing multidimensional diversity. 

Methods 
Monomer Pools. The publicly contributed program fcd-

tothor5 was used to convert the ACD6 and SPECS7 databases 
of commercially available chemicals into a THOR database.8 

It contained 4517 aliphatic primary amines suitable for side 
chains in submonomer peptoid synthesis. A Daylight toolkit9 

program was written to filter these by price (<$4/g), quantity 
available (>10 g), and lack of toxic or reactive chemical 
features. Some aromatic primary amines which coupled 
efficiently were also included, giving a total set of 721 primary 
amines. Similarly, 12 152 carboxylic acids and acid chlorides 
were filtered to give a set of 1133 potential capping groups. 

Descriptors for Experimental Design. A general method 
for combinatorial library design should work with virtually 
any potential chemical building blocks; thus, easily calculated 
properties are preferred. We computed 15—20 descriptors that 
characterize lipophilicity, shape and branching, chemical 
functionality, and receptor recognition features. 
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"Chemical functionality" Descriptors 
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F i g u r e 1. For each of 721 pr imary amines , a 2048-bit "fingerprint" s t r ing is computed where a 1 is set to indicate the presence 
of each chemical fragment up to seven bonds long. 1 -Tanimoto coefficient for each pair of fingerprints gives a matr ix of 
dissimilarities. Multidimensional scaling yields a set of five orthogonal "chemical functionality" properties, such t h a t the Euclidean 
distance between property vectors for each pair of monomers reproduces the dissimilarity matr ix with a relative s tandard deviation 
of 10%. The first th ree descriptors have been plotted for a set of 27 amines which have similar values in the remaining two 
dimensions. This shows the cluster ing by chemical functionality. 

(1) L ipophi l i c i ty . Lipophilicity is described as es t imated 
octanol/water par t i t ion coefficient. I t is calculated us ing 
fragment-based methods with the commercially available 
CLOGP,1 0 1 1 LOGKOW,12 and HINT1 3 programs or is est imated 
by comparison to exper imental values for analogous com
pounds from the Pomona92 database. 1 4 

(2) T o p o l o g i c a l I n d i c e s . Overall side chain shape, flex
ibility, branching, and a r rangement of cycles are characterized 
by topological indices15 calculated with the commercially 
available program Molconn-X.16 Topological indices have 
frequently been used to measure two-dimensional shape 
similarity.1 7 We calculated 70 connectivity indices, seven 
shape indices, molecular weight, number of elements , non-
hydrogen atoms, and bonds. These 81 descriptors were then 
reduced with principal components (PC) analysis using SAS 
PROC PRINCOMP. 1 8 For the set of 721 amines, PC analysis 
reduced the 81 descriptors to five la ten t variables t h a t 
explained 86% of the variance. Similarly, the first five PCs 
explained 87% of the variance for the set of 1133 carboxylic 
acids. Inspection confirmed t h a t compounds with similar sets 
of these five descriptors appea r similar in overall two-
dimensional shape, whereas compounds with very different 
sets of shape descriptors appear diverse. 

(3) C h e m i c a l F u n c t i o n a l i t y D e s c r i p t o r s . Another as
pect of molecular s imilari ty reflects the kinds of chemical 
functional groups represented in the monomers. Chemical 
da tabase search keys enumera t e the various chemical frag
ment s in a molecule. For example, Daylight "fingerprint" 
rout ines search a molecule for all subs t ructures up to seven 
bonds long and set one bit in a 2048-bit s t r ing for each 
fragment found.19 The Tanimoto coefficient, which measures 
similari ty between two bit strings,2 0 h a s been applied to these 
fingerprints to measure chemical similarity for da tabase 
searching and clustering.2 1 Figure 1 i l lustrates how we used 
these similari t ies as t he s ta r t ing point to derive a small 
n u m b e r of continuous descriptors sui table for exper imental 
design. A Daylight toolkit program calculated the dissimilarity 
be tween monomers as 1—Tanimoto coefficient for each pair of 
fingerprints. This gives a symmetrical N x N dissimilari ty 
matr ix with (N2 + N)/2 unique values, where N is the number 
of monomers. These intermonomer dissimilarities, which vary 
from zero for identical monomers to one for maximally dis
similar side chains, can be regarded as distances in a Cartes ian 
space of unknown dimension. Multidimensional scaling (MDS) 
determines low-dimensional Car tes ian coordinates for every 

monomer which best reproduce, simultaneously, the entire set 
of inter-side chain dissimilarities.2 2 For t he set of 721 amines, 
SAS PROC MDS 2 3 reduced the 2048-bit fingerprints to jus t 
five continuous variables t h a t reproduce all 260 000 original 
dissimilari t ies with a relative s t andard deviation of ju s t 10%. 
Seven dimensions were required to reproduce the 642 000 
pairwise similarit ies among the 1133 carboxylic acids to the 
same precision. The calculations required 7 h on an IBM 
RS6000 580 computer. Since monomers with similar values 
for these la ten t variables contain similar chemical fragments , 
we called these dimensions "chemical functionality" descrip
tors. 

(4) R e c e p t o r R e c o g n i t i o n D e s c r i p t o r s . "Atom layer" 
properties were developed to describe the distribution, through
out the side chain, of chemical features t h a t contribute to 
specific intermolecular interactions in receptor binding. These 
descriptors account for the directionality of the side chain, i.e., 
t h a t a toms near the peptoid backbone may contribute to 
binding differently t h a n those t h a t are more remote. As such, 
they require a unique atom, such as a point of backbone 
a t t achmen t or a pharmacophoric feature. They also incorpo
ra te isosterism, e.g., t h a t one acidic functionality can often 
subst i tute for another. A Daylight toolkit program character
ized each non-hydrogen atom by six properties: radius and 
whether it is acidic, basic, an H-bond donor, an H-bond 
acceptor, and/or aromatic. Within a side chain, all a toms a 
given bond count distance from the backbone comprise an 
"atom layer". Figure 2 shows how each of the six atom 
propert ies were summed for all a toms within each layer (for 
15 layers) to make a table of 6 columns (properties) by 15 rows 
(layers). For each pair of side chains, the max imum and 
min imum values were determined for each pair of correspond
ing cells in their respective atom layer tables. The sum of the 
min ima divided by the sum of the maxima gives "2m i n /2m a x" 
similari ty between t h a t pair of side chains . These values , 
which vary from 0 to 1, can be considered fuzzy logic analogs 
of Tanimoto similari ty and equal the Tanimoto coefficient for 
binary data . As with the chemical da tabase fingerprint 
similarit ies, a dissimilarity matr ix was generated and MDS 
was applied. For both the 721 amines and the 1133 carboxylic 
acids, five dimensions sufficed to reproduce the original 
dissimilari t ies wi th a relative s tandard deviation of 10%. 
Other atomic propert ies, such as par t ia l charge or atomic 
hydrophobicity, could be included. 

(5) Sca l ing . This completes the 16 propert ies calculated 
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Receptor Recognition Similarity Based on Atom Layer Tables 
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Figure 2. "Atom layer" table for a side chain made by 
summing each of several properties for all non-hydrogen atoms 
a given bond count distance from the oligomer backbone (BB), 
including: radii, acids, bases, H-bond donors (HBD), H-bond 
acceptors (HBA), and aromatics (Ar). Two tables are compared 
element by element, and the sum of the minima divided by 
the sum of the maxima gives the similarity between the side 
chains. Although compound II differs from I only by the 
removal of one atom, there are six changes in the tables (in 
bold), since the neutral amide HBA in I becomes a basic amine 
in II, and the phenolic oxygen, which had been acidic due to 
the electron-withdrawing carbonyl in I, is a neutral HBD 
without it in II. (Rows 11—15 were not shown as they contain 
all zeros. Note that elements that are zero in both tables do 
not affect the calculated similarity.) 

for each amine monomer (or 18 for each carboxylate capping 
group since they required two more chemical functionality 
descriptors), log P was scaled to unit variance and a mean of 
0. The remaining descriptors that describe each monomer fall 
into 3 sets: five "shape and branching" PCs from topological 
indices, five (or for the carboxylates, seven) "chemical func
tionality" MDS dimensions from database fingerprints, and 
five "receptor recognition" MDS dimensions from atom layer 
properties. Within each set of five, the descriptor values were 
centered about the mean and identically scaled to give unit 
standard deviation for the "first" component (i.e., with the 
largest Eigenvalue, which explains the most variance). Thus, 
log P and the first PC and MDS dimensions received equal 
weight in the designs, and the higher PCs and MDS dimen
sions received increasingly less weight. 

Exper imenta l Design. The primary motivation behind 
monomer characterization is to facilitate experimental design. 
The current Chiron mixture production robots are designed 
to use up to 36 monomers in each position of a modular 
combinatorial synthesis.24 The final task in the design, 
therefore, is to accommodate the robot design by choosing 
small subsets of amines and carboxylates from the pools of 
721 or 1133 that maximize or minimize the similarity between 
members. Each amine submonomer or carboxylate capping 
group was represented by a vector of the 16 or 18 properties 
(or by the top 12-14 PCs from those properties). Sets of 
monomers similar to a lead were chosen simply by rank 
ordering every member of the pool by the Euclidean distance 
from a selected side chain in the lead. Finding dissimilar sets 
is more difficult. In particular, we often wanted to design a 
"biased-diversity" set, by including some particular monomers 
based on a pharmacophore hypothesis or other criteria, and 
then complete the rest of the set with a small number of 
additional monomers from the full pool of 721 (or 1133) that 
are mutually diverse. This is accomplished with "D-optimal" 
design,25 using the commercially available JMP software.26 

D-optimal design chooses subsets from a large fixed pool 
that maximize the determinant of the "information matrix" 

|X*X| for (in this case) a quadratic design matrix, X. This 
minimizes the determinant of the inverse, which is the 
variance of the parameter estimates for a cubic model. The 
rows of X are the monomers, and the columns are the 
properties and their squares. Roughly speaking, in order to 
determine accurate parameter estimates to a quadratic re
sponse surface, the D-optimal design algorithm chooses small 
subsets of points from the large pools of 721 or 1133 that are 
well spread out and nearly orthogonal in property space; i.e., 
they are diverse. On the basis of an existing structure-activity 
relationship (SAR) or other information, some monomers can 
be preselected for inclusion in the set. The D-optimal design 
algorithm will then select additional monomers which best 
complement those, completing a design of a specified size with 
maximal overall diversity. 

R e s u l t s a n d D i s c u s s i o n 

S a m p l e D e s i g n . A sample monomer set for a biased 
combinatorial l ibrary is shown in Figure 3A. The top 
row of structures is tyramine and its five closest analogs. 
(The side chain from tyramine is found in several low-
nanomolar NSG peptoid l igands for both the a i -adren-
ergic and ^-opiate receptors.3) The lower two rows were 
chosen by D-optimal design to complete a diverse set of 
18 from the pool of 721 amines . 

D-optimal algori thms are extremely fast; a t r ia l 
design can be modified by excluding candidates from the 
total pool or including new preselected side chains, 
guiding the generat ion of new designs interactively. 
After many such cycles, a set can be achieved which is 
both chemically reasonable and statistically diverse. 
This ability to interactively steer the evolution of the 
design allows for the essential marriage between chemi
cal intuit ion and statist ical rigor. 

The use of MDS to convert similarities to a Euclidean 
property space, followed by an optimal design procedure, 
has several advantages over the al ternat ive approach 
of performing cluster analysis directly on the similarities 
and then choosing one compound from each cluster. I t 
allows diverse properties from many sources to be 
combined. Collinearity analysis of the properties re
veals the dimensionality of the data, which in tu rn helps 
indicate how many monomers are needed to supply 
wha t degree of coverage. Even if properties are cor
related, principal components analysis can be performed 
a t a final step. Imposing a grid on a Euclidean property 
space reveals the number and size of unrepresented 
regions and whether a given monomer is near an "edge" 
of the space. Compounds selected from clusters (cen-
troids or otherwise) generally do not produce a balanced, 
orthogonal design. In many clustering methods, the 
centroid of one cluster can actually lie within another 
cluster, so the "most representat ive member" of the 
cluster would never be chosen. In short, extract ing a 
la tent property space allows one to apply all of the tools 
of Euclidean geometry to the design and evaluation of 
monomer sets. Cluster analysis, however, does have the 
impor tant advantage t h a t it can be applied to much 
larger da ta sets. 

F l o w e r P lo t s . "Flower plots" were developed to 
simultaneously display all 16 propert ies for each indi
vidual amine monomer. This graphical tool allows the 
similarity within a monomer set to be visually evaluated 
and aids in the in terpre ta t ion of s t ruc tu re -ac t iv i ty 
relationships. Flower plots are bar graphs in which the 
"x-axis" has been wrapped in a circle. They were 
generated with a modified version of M. Connolly's 
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Tyramine Biased Diversity Design 
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Figure 3. Structures and "flower plots" of 18 side chains from a biased NSG peptoid combinatorial library based on the tyramine 
submonomer. (A) The top row side chains are from tyramine and its five closest available analogs. The 12 side chains in the lower 
rows were chosen by D-optimal design from a pool of 721 amines. (B) Corresponding flower plots each represent all 16 properties 
for a single side chain. Petals for positive values point outward, and negative petals point toward the center. The radius is 3 
standard deviations, and the center has been colored by similarity to tyramine. 

MSP software.27 Figure 3B shows the flower plots for 
the biased-diversity set of peptoid side chains based on 
the tyramine monomer. Each property is assigned to a 
"petal", with positive petals pointing outward and 
negative petals pointing toward the center. The radius 
is 3 standard deviations for the first dimension, and the 
center circle is colored in spectrum order to indicate an 
additional property such as biological activity or, in this 
case, similarity to the reference structure tyramine. The 
top row of tyramine analogs has nearly identical flower 
plots. The lower two rows of flower plots for diverse 
structures appear dissimilar. The flower plots can show 
how diversely the 721 amines are distributed through 
the computed property space and how widely the 
members of a small, statistically chosen subset sample 
this space. They cannot, of course, prove that the subset 
is diverse in any "absolute" sense, independent of the 
calculated properties. 

Collinearity Analysis. For the 721 amines, only the 
first database fingerprint MDS dimension and the first 
atom layer MDS dimension are correlated, with r 2 = 
0.67 and variance inflation factors (VTFs) of 9.6 and 10.8, 
respectively. VIFs, which are the diagonal elements of 
the inverse correlation matrix, measure multicollinear-
ity.22 Values vary from 1 for an orthogonal variable to 
infinity for a completely redundant descriptor. All other 
pairwise correlations are low (r 2 < 0.4), and the low 
VIFs (<3) for the remaining 14 descriptors indicate low 
multicollinearities as well. Principal components analy
sis showed tha t the first PC explained only 15% of the 
variance for the 16 properties, and 12 PCs were needed 
to explain 95% of the variance. For the larger set of 
carboxylates, there were no high (r 2 > 0.4) pairwise 
correlations. However, as with the amines, the VIFs 
for the first database fingerprint MDS dimension and 
the first atom layer MDS dimension were fairly high 
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Diversity: Molecular Fragments in Combinatorial Libraries 

6000 

Library Building Blocks 
Figure 4. "Chemical functional group diversity" measured as the number of molecular fragments of up to seven bonds that 
comprise various chemical diversity libraries. NSG peptoids made from primary amines are far more diverse than any of the 
biopolymer libraries and slightly more diverse than the set of 45 best selling small molecule drugs from 1991. 

(9.4 and 8.9, respectively), indicating multicollinearities. 
The first PC explained only 16% of the variance for 18 
properties, and 14 PCs were needed to explain 95% of 
the variance. Thus, although these descriptors are not 
strictly orthogonal, there is little redundancy among 
them. 

Comparing Diversity Among Libraries. In ad
dition to serving as the starting point for the chemical 
functionality descriptors used in experimental design, 
the Daylight database fingerprints can be used as a 
measure of the "chemical functional group diversity" 
spanned by a library. Recall that the fingerprint 
routines search through a molecular structure to find 
all of its substructures of up to seven bonds. A hashing 
algorithm randomly assigns each substructure to one 
bit in a 2048-bit string. The logical OR of the all the 
fingerprints in a library of molecules is termed the 
"library fingerprint", with bits set for all the chemical 
fragments represented in the entire library. Thus, the 
more bits set in the library fingerprint, the greater its 
chemical functional group diversity. 

There is a one-to-many relationship between finger
print bits and fragments. The first fragment found will 
always set an unset bit. However, if one-half of the bits 
have already been set, then there is only a 50% chance 
that the hashing algorithm will assign the next new 
fragment to a previously unset bit. If the library 
fingerprint is already 90% set, then, on average, 10 new 
fragments are required to set just one additional bit. 
The number of fragments if) required to set a given 
number of number of bits (b) is approximately f= 2048-
(ln(2048/(2048 - 6))). Eventually, all of the bits will be 
set, and the library fingerprint will be "saturated". A 
2048-bit library fingerprint saturates at about 15 000 
fragments. 

Figure 4 compares the number of such fragments 
comprising several types of libraries. Combinatorial 
oligonucleotide libraries made from four bases, regard
less of length, are all composed of fewer than 200 
fragments. Peptide libraries made from the 20 coded 
amino acids are composed of fewer than 300 fragments. 
Although the chemistry may not yet exist to make such 

a library, a mixture of all possible oligosaccharides made 
from 38 commercially available sugars, including 
branched oligomers, would include only about 400 
fragments. Peptide libraries made from an augmented 
set of 60 amino acids would contain just over 400 
fragments. NSG peptoid libraries made from all com
binations of the 721 amines in this study encompass 
over 5000 fragments, giving them 1 order of magnitude 
higher chemical functional group diversity than any of 
the biopolymer libraries. Even a small library from a 
D-optimally designed set of 24 amines contains 3 times 
as many fragments as the best biopolymer libraries. As 
a sobering bench mark, however, Figure 4 also shows 
that the 45 best selling small molecule drugs from 1991 
contained over 4000 fragments, far more than any of 
the biopolymer libraries and almost as many as the 
NSGs. Medicinal chemists have employed not only a 
wide variety of chemical functionality to solve their drug 
design problems but also a high density of functional 
groups compared to simple oligomeric compounds. The 
average size of the small molecule drugs is slightly less 
than that of the NSG trimers and much less than typical 
biopolymer libraries. If "diversity density" is character
ized as the number of unique fragments in a library 
divided by the average molecular weight, the existing 
small molecule drugs actually have slightly greater 
diversity density than the NSG libraries and much 
higher diversity density than the peptides, oligosaccha
rides, or oligonucleotides. Such analyses can be used 
to indicate whether to continue exploring a particular 
series of compounds or to move on to a new family of 
combinatorial chemistry. While the density of struc
tural fragments is not a complete or absolute measure 
of molecular diversity, particularly in large surface 
interactions between biopolymers, it seems like a useful 
one for assessing libraries of low molecular weight 
compounds likely to produce orally active drugs. It will 
be a challenge to combinatorial synthesis technology to 
develop new low molecular weight libraries that are as 
diverse as the small organic compounds that make up 
the current generation of drugs. 
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Conclusion 
Synthesizing and testing combinatorial libraries need 

not be "brute force" screening or "irrational", purely 
random drug discovery. Principles of sound experimen
tal design now routinely employed in traditional me
dicinal chemistry can be applied to the design of 
combinatorial mixtures as well. Using structural de
scriptors and statistical techniques, monomers can be 
chosen to maximize a library's diversity or to bias a 
library toward certain features while keeping other 
features dissimilar. When testing mixtures, maximiz
ing diversity not only minimizes redundancy to increase 
efficiency but also improves the chance that activity in 
a potent mixture is due to a few highly active unique 
compounds, rather than a large number of similar 
compounds with only moderate potency. While the 
method was illustrated for selecting amines and car-
boxylic acids for capped peptoid libraries, it is general 
and has been employed for other modular chemistries 
as well. 

While these methods are now routinely used to design 
NSGs and other combinatorial libraries, they still 
represent only the initial efforts to apply computational 
methods to modular synthesis and screening. Current 
work includes experimental validation of these theoreti
cal design approaches, using our growing database of 
combinatorial library structure-activity data. Studies 
are also underway to characterize three-dimensional 
shape similarity for flexible side chains, characterize 
and design new scaffolds for additional families of 
modular chemistry, and design, de novo, libraries to 
bind a receptor or enzyme site of known structure. With 
sufficient ingenuity, many computational techniques 
currently employed in "rational drug design" should also 
be adaptable to "rational library design" for combina
torial screening. 
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